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Abstract
The article discusses the problem of transformation in the form of the function 

2 2
:f R R→  as a dependence between the coordinates [ , ]x y  of the original 

system and the coordinates [ , ]X Y  of the secondary system. The task of the 

transformation of [ , ] ( , )X Y f x y=  technically understood as the transformation 

of a system of coordinates has been solved by means of one direction two layer 

neural networks of the sigmoidal type, radial neural networks, recurrent cascade 

neural networks, and neuro-fuzzy systems with the use of the Takagi-Sugeno-

Kang model. The numerical procedures applied make it possible to obtain a level 

of accuracy of the task equivalent to the cartographic accuracy of pictures in the 

Spatial Information Systems.

Аннотация
В статье обсуждается проблема трансформации в виде функции 

2 2
:f R R→ , представляющей собой зависимость между координатами 

[x,y] первичной системы и координатами [X,Y] вторичной системы. За-

дача трансформации [X,Y] = f(x,y), технически понимаемая как транс-

формация системы координат, решена посредством однонаправленных 

двухслойных нейтральных сетей сигмоидального типа, радиальных ней-

тральных сетей, рекуррентных каскадных нейтральных сетей, нейро-не-

четких каскадных нейтральных сетей с применением модели Такаги-Су-

гено-Канга. Применяемые численные методы при постановке задачи 

позволяют достичь уровня точности, эквивалентного картографической 

точности изображений в Пространственных Информационных Системах.

INTRODUCTION
The transformation of coordinates is an important task from the field of 

geodesy because of the introduction of a unified system of coordinates 
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complying with the standard at the time of European integration. The 

transformation of the coordinates of cartographic systems operating in 

various reference systems is possible when the formula is known for specifying 

the relationship between the coordinates of the connecting points with known 

coordinates in both systems [4]. The most frequently used method for 

calculations of this kind is the Helmert transformation, in which the 

estimation of parameters is achieved on the assumption of the minimum 

weighed length of the vector of corrections for the adaptation points

min,
Tv Pv =  (1)

where: v — the vector of corrections

            P — the weight matrix of the coordinates.

This transformation is used in the tasks of:

— the transformation of geodesic and photogrammetric coordinates,

— affine calibration,

— specifying parameters for the displacement of a completed engineering 

object.

Unfortunately, in the process of specifying transformation parameters 

the Helmert method has a considerable inaccuracy since it is not immune to 

gross errors.

As far as the abovementioned method is concerned, the author suggests 

an alternative approach to the transformation of coordinates — by means of 

one direction two layer neural networks, radial neural networks, recurrent 

cascade neural networks, and neuro-fuzzy systems. The results of the 

numerical realization of the task of transforming the coordinates of points 

from the original system into the secondary system have been compared in 

terms of accuracy with the results obtained by means of professional 

algorithms.

SELECTED METHODS OF TRANSFORMING COORDINATES

Gradient algorithms for learning one direction two layer neural networks

Artificial neural networks have strong theoretical foundations and a wide 

practical use. Any problem that can be solved by means of classic modeling or 

statistical methods can be solved by means of neural networks [8]. Definitely, 

in most cases one direction multi-layer neural networks of the sigmoidal type 

are used in practice. From the mathematical point of view neural networks of 

this type play the part of the stochastic approximation of a multi-variable 
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function, which transforms the set of input variables 
Nx R∈  into the set of 

output variables 
Mz R∈ [11].

A two layer neural network (two layer perceptron), the general outline of 

which is presented in Fig. 1, has been used in order to carry out calculations 

connected to the transformation of coordinates from a primary system into 

a secondary system [9], [5].

Fig. 1. Multilayer Network

Defining the relation as a cause and effect connection between the input 

and the output of the network with a priori determined topology is the process 

of learning the network, which consists in adapting parameters of the network 

called weights.

The technique of learning neural networks uses gradient optimization 

methods. The basis for the algorithms used to learn the network is an objective 

function (energy function), defined by means of Euclides metrics as a sum of 

the squares of the differences between the values of the input signals of the 

network and the assigned values in the form:

( )2
( ) ( )

1 1

1
,

2

p M
i i

j j

i j

E z d
= =

= −∑∑  (2)

where:
p  — the number of input vectors,

M  — the number of coordinates of the input vector,
i

j
z  — the coordinate of the output vector ( ),i p= 1,2,...,  ( ),j M= 1,2,...,

( )i

j
d  — the coordinate of the assigned vector 

( ) ( )( ), ,
i i

x y  ( ),i p= 1,2,...,  
( ).j M= 1,2,...,
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The minimization of the objective function (2) taking into account the 

sigmoidal activation function, consists in the correction of the weights 
ij

v  

and 
ij

w  (Fig. 1) on the basis of the information included in the gradient of the 

objective function ( ),E w∇  according to the relation

( ),w E w∆ = −η∇  (3)

in which ( )E w−∇  denotes the general direction of the minimization, 

and η the learning ratio (the ratio of the iterative step).

Most gradient optimization methods use the square model of the function 

in the vicinity of a particular solution point w(t) (extension into the Taylor 

series) in order to obtain information about the curvature of the function 

included in the Hessian in the following activation step k+1. In order to 

obtain convergence towards an optimum solution, gradient methods of 

learning networks widely known from the theory of optimization have been 

used in this paper, namely [3]:

— the greatest decline method (linear approximation of the function E(w),

— quasi-Newtonian methods: the method of variable metrics, the 

Levenberg-Marquardt method of conjugate gradients, and the Resilient 

Back-Propagation algorithm .

Radial neural networks
The stochastic approximation of a multi-variable function achieved by 

means of multi-layer neural networks is global in character, because the 

transformation of the function estimated into any point in space is achieved 

as a result of simultaneous stimulation of a number of neurons. 

A complementary method of transforming the input set into the output set is 

the adaptation of a number of single approximation functions to the members 

of the set of assigned values within a limited area of multi-dimensional space. 

The transformation is local in character, and the transformation of a full 

input vector 
nx R∈  into the output vector 

Mz R∈  is a result in the form of 

local transformations achieved by means of networks with radial base 

functions (Fig. 2), consisting of neurons which carry out the transformation 

in the hidden layer [8]:

( ),  .
nx x c x R→ ϕ − ∈  (4)

If in the input we have p input vectors ( 1,2,..., ),
i

x i p=  which are going to 

be transformed into a set of real numbers ( 1,2,..., ),
i

d i p=  then the problem 

consists in searching for an estimator of the transformation function.

( ) .
i i

F x d=  (5)
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If the number of neurons M is introduced as much smaller than the 

number of learning patterns ( ),p M p<< , then the transformation function 

which is being estimated has the form

( ) ( )
1

.
M

i i

i

F x w x c
=

= ϕ −∑  (6)

The symbols included in the formula (6) denote:

w
0
, w

1
,… w

M
 — scalar ratios called weights,

1 2
, , ,

d

M
c c c R∈  — vectors called centers, functions ϕ are located above 

centers,
dx R∈  — the input vector.

The most widely used radial function ϕ (apart from a number of others, 

some of them being imperfect) is the Gauss function (a simplified form)

( ) ( )
2

2
exp ,

2

i

i

i

x c
x x c

y

⎛ ⎞−
⎜ ⎟ϕ = ϕ − = −
⎜ ⎟⎝ ⎠

 (7)

which has nothing in common with the assumptions of the normal 

distribution, but satisfies the conditions of the Parzen method and brings 

good results in practice. On the basis of a suitable procedure for the 

minimization of the objective function

( )
2

1 1

p M

j i j i

i j

E w x c d
= =

⎡ ⎤
= ϕ − −⎢ ⎥

⎣ ⎦
∑ ∑  (8)

the coordinates of the vector of weights w are determined as well as the 

Fig. 2. Radial Basis Network
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values of the parameters c  and σ  of the radial functions. If the parameters 

are known, the solution of the minimization is achieved by means of the 

Green pseudo-inversion of the matrix

.w G d+=  (9)

Whether good results are obtained from the transformation of coordinates 

by means of neural networks with radial base functions depends on the correct 

architecture of the network, the number o radial base functions and their 

widths as well as the value of the learning ratios [2], [6].

Recurrent cascade neural networks
Recurrent cascade multi-layer perceptron neural networks are created by 

adding suitable feedbacks to one direction networks. The feedbacks are 

obtained from the output layer of neurons and directed to neurons of the 

input layer. Therefore, it is a dynamic system, which works as a one direction 

multi-layer network because of the way the output signal is created.

The operation of a cascade neural network is divided into two stages. In 

the first stage a non-recurrent cascade network is used according to the 

structure presented in Fig. 3. The architecture of a non-recurrent cascade 

network as a one direction network is constituted by a one step increase of the 

dimension of the input vector and the output vector. In the initial stage the 

first layer receives stimulation from the input layer in the form of the vector x  

with the coordinates (x,y) of the point in the original system, and the expected 

output signal is the coordinate 
1
'x  of the point in the secondary system. After 

the learning process is completed there is an increase in the dimension of the 

input vector, which includes both the coordinates (x,y) in the original system 

and the coordinate 
1
'x  obtained from the output, i.e. [ ]1

, , .x x y x=′ ′  The 

application of this vector in the input starts another learning cycle with the 

expected output signal in the form of the coordinate 
1
'y  in the secondary 

system. As a result of this course of action we obtain the vector [ ]1 1
, , , .y x y x y=′ ′ ′  

The number of learning cycles corresponds to the number of members of the 

learning set.

Fig. 3. Non-recurrent cascade neural network
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In the second stage the course of action concentrates on the choice of 

a structure for a recurrent cascade network (Fig. 4).

Fig. 4. Recurrent cascade neural network

In the second stage a recurrent cascade neural network is built (Fig. 4), in 

which the input vector is created by the coordinates of the points in the 

original system and the secondary system ( ), , ,X x y x y= ′ ′  and there are 

feedback connections between the output layer and the input layer. It should 

be noticed that during the process of learning the input vector is updated. For 

the iteration k+1 in the input vector, there are coordinates of points in the 

secondary system obtained from the iteration k. Algorithms for learning 

a recurrent network make use of the abovementioned gradient optimization 

methods, and the same as in the case of a one direction neural network we 

calculate the gradient of the objective function (2) in relation to each weight. 

A detailed form of the recurrence formula, which makes it possible to 

calculate the gradient at any moment k on the basis of its value at the previous 

moments, is included in the paper [8].

NEURO-FUZZY SYSTEM OF THE ADAPTIVE TYPE
Neuro-fuzzy systems are neural networks which have the ability to 

transform fuzzy sets. Neuro-fuzzy systems make it possible to interpret 

knowledge accumulated in the weights of neural bonds, which is the basis for 
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formulating sets of fuzzy conditional rules «if — then». One of the basic 

methods of obtaining bases of knowledge consisting of rules «if — then» 

consists in extracting rules on the basis of numerical data about the inputs and 

outputs of the phenomenon which is being modeled.

In this case the Takagi — Sugeno — Kang (TSK) system is usually used, 

whose advantage is a small number of calculations necessary to determine the 

output value of the system. The knowledge basis of the TSK system is M 

inference rules «if — then» together with a linear function (prime polynomial) 

in the conclusion of the kth inference rule, written in the relation [7]

kM ( )
= if 

1

N

j
x

j N≤ ≤
∧  is 

k
,

j
A( )

 then ( )k
y f x=  for 1,2,...,k M=   (10)

and the linear function

0

1

x
N

k k kj j

j

f p p x
=

( ) = + ∑  (11)

where pk denotes (N+1) — a dimensional vector of parameters. A set of 

simple linear functions f
k
(x) makes it possible to model complicated 

dependences between the input and the output of the system.

Fuzzy sets as a generalization of ordinary sets are characterized by 

a partial membership of members in a particular set. Similarly to classic sets, 

which are described by means of characteristic functions, fuzzy sets are 

described by means of membership functions with values from the range [0,1] 

[10]. One of the most widely used functions of membership in a fuzzy 

representation of numbers is the Gauss function, defined for the variable x, 

the center c and the variance σ, determined for the set A in the form (general 

form) [8]

2

exp .
A

x c
x

⎡ ⎤−⎛ ⎞µ ( ) = −⎢ ⎥⎜ ⎟⎝ ⎠σ⎢ ⎥⎣ ⎦
 (12)

In the paper the function (12) has been replaced with a rational Gauss 

function (bell function) described by the formula

,
A b

x
x c

2

1
µ ( ) =

−⎛ ⎞1+ ⎜ ⎟⎝ ⎠σ

 (13)
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where the parameter b influences the form of the generalized function. 

Depending on what value of the parameter σ  is chosen, a Gauss function, a 

triangular function or a trapezium function can be described. An aggregation 

of information included in the premises for the implication constitutes the 

resultant of the membership function 
A

xµ ( ).  The aggregation operator is 

represented by the transformation [ ]: 0,1
N⊕  carried out in order to obtain 

the value [ ]0,1 ,x ∈  i.e. ( )1 2
, , , .

N
x x x x= ⊕ 

According to a fuzzy procedure, the aggregation of the premises for the 

implication will be interpreted as an algebraic product, which is expressed by 

the formula for the kth inference rule

.
k

j

N
k

A b
kj

j j

k

j

x

x c

y

( )
( )

2( )=1

( )

⎡ ⎤
⎢ ⎥
⎢ ⎥1⎢ ⎥µ ( ) =
⎢ ⎥⎛ ⎞−
⎢ ⎥1+ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∏  (14)

The output value of the system is obtained as a weighed mean of the 

output values of particular rules

( ) ( )

( ) ( )
.

M

A k

k

M
k

A

k

x f x

y x

x

(κ)

=1

=1

µ
( ) =

µ

∑

∑
 (15)

The architecture of a neuro-fuzzy network is presented in Fig. 5.

There are five layers in the network. In the first layer the input values 
j

x  

become fuzzy and the parameters 
( ) ( ) ( )

, ,
k k k

j j j
c bσ  (centers, widths and shapes) 

are determined by means of gradient learning methods. In the second layer 

implication premises are aggregated. In the third layer the values of the 

function fk(x) (TSK function) are generated on the basis of the adaptation of 

the parameters pkj (k=1,2,…, M, j=1,2,…, N). Two summing neurons 

constitute the fourth layer, one of them calculates the weighed sum of the 

signals yk(x), and the other the sum of the weights (the weights are interpreted 

as an aggregated value 
( ) ( )k

A
xµ ). The last — fifth layer contains only one 

neuron which generates the output signal of the network y(x) according to the 

dependence (15).

It is also possible to notice that the Takaga — Sugeno — Kang fuzzy 

system and normalized radial neural networks are equivalent when certain 

conditions are satisfied [7].
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NUMERICAL EXAMPLE
The transformation of coordinates from the original system into the 

secondary system has been carried out with the use of a suitable structure of 

neural networks matched to a particular task. The author of the paper attempts 

to choose the structure and parameters of the network so as to approximate 

the assigned values in a statistically optimum way, i.e. to obtain an acceptably 

low extent of error in the test data.

The solution of the task of transformation has been achieved on the basis 

of a learning set and a test set, and each set has 1600 points. The points of the 

learning set represent the adaptation points, and the result of the 

transformation of the coordinates of the points of the test set from the original 

system into the secondary system is a result of the influence of the network on 

data not participating in the process. For each of the abovementioned and 

implemented network structures presented in tables 1÷5 an optimum value of 

the objective function, whose value is expressed by the root of the random 

mean square error (RMSE), has been determined for a particular minimization 

method. A change in the value of the gradient in two consecutive iterations on 

Fig. 5. Structure of a TSK neuro-fuzzy network
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the level 1e-10 has been adopted as a criterion for stopping the iteration 

process.

In order to provide complete information about the process of learning 

networks it is necessary to add that for multi-layer perceptron networks 

a variable number of hidden layers has been used as well as a variable number 

of neurons in particular layers. The training of radial networks takes into 

account a variable number of radial base functions and variable values of the 

parameter σ while choosing their shapes.

An effective method of obtaining highly accurate results of transformation 

consists in the application of the results of the transformation [X,Y] = f(x,y) 

by means of neural networks, which are created by the output variables of 

a Takaga — Sang — Kang (TSK) neuro-fuzzy network. An important problem 

while building the structure of a TSK neuro-fuzzy network is to determine 

the number of fuzzy inference rules, which is determined on the basis of the 

minimization of the value of the global statistic measure

1 2 3 4
.

h A w A
a V a D a D a tα = − − +  (16)

The local minimum of this function, described in the paper [1], makes it 

possible to determine a sub-optimum number of clusters for a particular data 

set. The ratios of the scale a
i
=(1,2,3,4) have been determined by means of 

a genetic algorithm with the use of a tournament selection of chromosomes, 

for the likelihood of one-point crossing equal 0,77 and the likelihood of 

mutation equal 0,0077.

The effectiveness of the use of particular algorithms for solving the task of 

transformation of coordinates is shown by the results included in tables 1÷5, 

in the form of the random mean square error (RMSE) calculated as

2

1

1
( ) .

P

p p

p

RMSE d z
P =

= −∑  (17)

Table 1

Characteristics of the accuracy of the transformation [X,Y] = f(x,y) 
by means of neural networks

The gradient methods
The network 
architecture

The transformation error RMSE [m]
the learning set the testing set

the Levenberg-Marquardt method

2_5_2_1

0,011 0,012

the RPROP algorithm 0,012 0,013

the quasi-Newtonian method 0,012 0,013

the conjugate gradients method 0,132 0,158

the greatest decline method 0,794 0,975
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Table 2

Characteristics of the accuracy of the transformation [X,Y] = f(x,y) 
by means of nural networks depending on the number of radial functions

Number of radial basis functions
The transformation error RMSE [m]

the learning set the testing set

60 0,034 0,029

90 0,013 0,014

100 0,057 0,092

Table 3
Characteristics of the accuracy of the transformation [X,Y] = f(x,y) by means 

of neural networks depending on the radial base functions used

The radial basis functions
The transformation error RMSE [m]

the learning set the testing set

the Gauss function 0,013 0,014

the spline function of fourth degree 0,015 0,022

the spline function of third degree 0,013 0,024

the central function 0,008 1,124

the Hardy’s function 0,045 189,271

the linear function 0,099 220,404

the aquared function 0,020 227,510

Table 4
Characteristics of the accuracy of the transformation [X,Y] = f(x,y) 

by means of recurrent cascade neural networks

The gradient methods
The network 
architecture

The transformation error RMSE [m]

the learning set the testing set

the Levenberg-Marquardt method 2_10_1 0,007 0,008

the conjugate gradients method 2_15_1 0,009 0,011

the quasi-Newtonian method 2_10_1 0,022 0,034

the greatest decline method 2_15_1 0,594 0,684

Table 5
Characteristics of the accuracy of the transformation [X,Y] = f(x́ , ý ) 

obtained with the use of the TSK system on the basis of results determined 
by means of neural networks

The gradient methods
The transformation error RMSE [m] (the testing set)

the neural networks
the Takaga — Sugeno — 

Kang fuzzy system

the Levenberg-Marquardt method 0,012 0,008
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The gradient methods
The transformation error RMSE [m] (the testing set)

the neural networks
the Takaga — Sugeno — 

Kang fuzzy system

the RPROP algorithm 0,013 0,008

the quasi-Newtonian method 0,013 0,010

the conjugate gradients method 0,158 0,092

the greatest decline method 0,975 0,729

CONCLUSIONS
The methods applied to transform coordinates of the points from the 

primary system into the secondary system make it possible to better use the 

calculating potential of artificial intelligence. An optimized measure of the 

quality of the neural networks and the algorithms applied for the transformation 

of coordinates from one system into the other is the generally preferred mean 

square error in the input, regarded as the basic measure of error purely 

mathematical in structure.

While looking at the data included in tables 1÷5 it is possible to compare 

the effectiveness of the algorithms learning neural networks with a particular 

structure on the basis of the tests which have been carried out. While using 

neural networks which make use of gradient learning methods, the most 

favourable optimization have been obtained by means of the Levenberg — 

Marquardt method, the method of variable metrics, and the RPROP 

algorithm. The other gradient methods have proved to be ineffective for 

solving the assigned task (table 1). Another procedure used for the 

transformation of coordinates is a radial network as a natural complement of 

sigmoidal networks. Satisfactory results of the transformation of coordinates 

can be obtained when the right architecture of the network is chosen as well 

as the right number and type of radial base functions and their width, and as 

usual, the right value of the learning ratio (tables 2 and 3).

A considerable improvement of the quality of the adaptation of systems 

of coordinates has been obtained as a result of the use of cascade neural 

networks and the TSK neuro-fuzzy system operating on the basis of the 

results of learning neural networks with gradient methods. The results of an 

optimum activation of output neurons included in tables 4 and 5 prove that 

strong non-linear systems consisting of a large number of variables should be 

optimized by creating intermittent results, which, when processed later, will 

make it possible to assess very accurately the results of the transformation in 

the whole space in question.

end of Table 5
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