Источник: Галалюк, А.В. Математическое моделирование образцов каменной кладки при сжатии / А.В. Галалюк, И.Е. Демчук // Проблемы современного бетона и железобетона : сб. науч. тр. / Ин-т БелНИИС; редкол.: М. Ф. Марковский [и др.]. – Минск, 2012. – Вып. 4. – С. 20-29.

Галалюк А.В., аспирант, Филиал РУП «Институт БелНИИС» - Научнотехнический центр, г. Брест Демчук И.Е., аспирант, Филиал РУП «Институт БелНИИС» - Научнотехнический центр, г. Брест

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОБРАЗЦОВ КАМЕННОЙ КЛАДКИ ПРИ СЖАТИИ

NUMERICAL MODELING OF COMPRESSION TEST OF MASONRY SPECIMENS

Аннотация

Рассмотрены особенности КЭ-моделирования каменной кладки. Приведены результаты экспериментальных и численных исследований образцов кладки, подверженных сжатию. Произведено сравнение напряженнодеформированного состояния образцов кладки по результатам испытаний с результатами численного расчета.

Abstract

The features of the FE-modeling of masonry have been considered. The results of experimental and numerical researches of specimens of masonry subjected to compression have been presented. A comparison of the stress-strain state of specimens of masonry in testing with the results of numerical calculation has been compared.

введение

В соответствии с Еврокодом 6 [1] прочностные и деформационные характеристики каменных кладок определяются на основании аналитических зависимостей или испытаний опытных образцов согласно стандартам серии EN1052.

Изготовление и испытание опытных образцов кладки требуют специального оборудования и существенных материальных и временных затрат.

В последнее время за рубежом для получения прочностных и деформационных характеристик каменной кладки используются численные расчеты с применением программных комплексов ANSYS и DIANA. Для расчета, как правило, используют метод микромоделирования, в котором кирпич и раствор аппроксимируются конечными элементами со своими деформационными и прочностными характеристиками. При этом могут быть учтены свойства контакта по границе «камень-раствор», а также физическая нелинейность материалов. На микромоделях каменной кладки можно получить характерное напряженно-деформированное состояние: а) трещины в растворных швах, б) скольжение вдоль горизонтальных и вертикальных швов при малых значениях нормальных напряжений, в) трещины в кладочных элементах в направлении растяжения, г) наклонные трещины от растяжения в кладочных элементах, д) «раздробление кладки». Недостаток данного подхода состоит в том, что даже упрощенная методика микромоделирования становится нереализуемой в случае реальных конструкций, включающих большое количество элементов. Альтернативный способ должен описывать поведение кладки с точки зрения макроуровня или средних напряжений и деформаций, при этом каменная кладка рассматривается как однородный материал.

Анализ каменных конструкций, состоящих из большого количества кладочных элементов и швов, может быть выполнен только с использованием макромоделей, в которых зависимость между средними напряжениями и деформациями строго установлена. При этом следует учитывать анизотропию каменной кладки, несмотря на то, что свойства кладочных элементов и раствора являются изотропными [2].

Конечно-элементная сетка в таких моделях не зависит от геометрического расположения составных элементов кладки. Другими словами, площадь одного конечного элемента может включать в себя фрагмент из кладочных элементов и растворных швов. Это предполагает более обобщенный способ анализа, а соответственно точность такого метода ниже, чем микромоделирования вследствие усреднения значений напряжений.

Цель настоящей работы заключалась в сравнении результатов численного расчета микро- и макромодели образца каменной кладки, подверженного сжатию, а также в сравнении полученных значений напряжений и деформаций с результатами экспериментальных исследований.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

Определение деформационных характеристик каменной кладки производилась на образцах, изготовленных из керамических полнотелых кладочных элементов. Образцы были выполнены в соответствии с EN 1052-1 [3].

Для испытания образцов применялся гидравлический пресс П-125. Для измерения перемещений использовались механические индикаторы часового типа, установленные на базе от 280 до 300 мм (см. рис. 1).

Рисунок 1. Схема испытаний опытных образцов: *а* – общий вид, *б* – характер трещинообразования, *в* – схема расстановки приборов (1 – образец кладки, 2 – индикаторы перемещений часового типа ИГП-1 с ценой деления 0,001 мм; *h*_s = 515 мм; *l*_s = 510 мм; *t*_s = 120 мм)

Было испытано три серии образцов с приложением нагрузки перпендикулярно горизонтальным растворным швам. Каждая серия включала в себя 8—9 испытываемых образцов для определения модулей упругости и 4—5 испытываемых образцов для определения коэффициентов Пуассона. Образцы изготавливалась с применением кладочного раствора различной прочности при неизменной нормализованной прочности кладочных элементов, определенной в соответствии с [4] и равной $f_b = 44,1$ МПа при сжатии перпендикулярно «постели». Серия КРО-1 изготавливалась на растворе прочностью $f_m = 10,9$ МПа; КРО-2 – $f_m = 7,9$ МПа; КРО-3 – $f_m = 3,1$ МПа. Общий вид, характер трещинообразования, а также геометрические характеристики и схема расстановки измерительных приборов представлены на рис. 1.

Для определения деформационных характеристик кладочных элементов и кладочных растворов были изготовлены четырехгранные призмы размерами: 250×65×65 мм и 300×70×70 мм соответственно. Общий вид образцов при испытании и характер трещинообразования представлен на рис. 2.

Рисунок 2. Схема испытаний и характер трещинообразования опытных образцов: *а*, *б* – растворных призм размером 300х70х70 мм, *в*, *г* – призм, выпиленных из кирпича размером 250х65х65 мм

Растворные призмы изготавливались из раствора, который применялся при выполнении опытных образцов кладки. Для приготовления кладочных растворов использовалась сухая растворная смесь № 111/11 М100 по [5] производства ОАО «Красносельскстройматериалы». Из данной растворной смеси путем изменения пропорций составляющих готовилась растворная смесь других прочностных показателей. Прочность кладочного раствора при сжатии устанавливалась на основании европейского стандарта [6].

Керамические призмы выпиливались из кирпича, применяемого для изготовления опытных образцов кладки.

Образцы-призмы испытывались при помощи гидравлического пресса П-10. Для измерения относительных деформаций кирпича и раствора использовались тензодатчики с базой 20 мм и автоматический измеритель деформаций АИД-4.

Модуль упругости кирпичной кладки, а также кладочных элементов и раствора (E_i, E_{bi}, E_{mi}) определялся как секущий модуль при сред-

нем значении относительной деформации измеренной в двух точках ε_i и нагрузке равной одной трети разрушающей нагрузки $F_{i_{max}}(1)$.

$$E_i = \frac{F_{i,\max}}{3\varepsilon_i A_i},\tag{1}$$

где:

F_{i,max} — максимальная нагрузка воспринимаемая образцом каменной кладки, кладочным элементом или раствором;

А_i — площадь поперечного сечения образца;

є_і — относительные продольные деформации.

Коэффициент поперечной деформации *v* (коэффициент Пуассона) определялся как отношение поперечной деформации к продольной (2).

$$v = \left| \frac{\varepsilon_x}{\varepsilon_y} \right|,\tag{2}$$

 ε_x — относительные поперечные деформации;

 ε_{y} — относительные продольные деформации.

По результатам испытаний строились диаграммы деформирования образцов кирпича, раствора и каменной кладки (рис. 3) и определялись их деформационные характеристики (табл. 1, 2).

Таблица 1

Деформационные характеристики кирпича и раствора

Материал	Модуль упругости E, МПа	Коэффициент поперечной деформации <i>v</i>
Полнотелый керамический кирпич	11850	0,113
Раствор:		
— M 31	4600	0,23
— M 79	9210	0,19
— M 109	10580	0,17

Таблица 2

Деформационные характеристики каменной кладки [7]

№ серии	Модуль упругости Е, МПа		Коэффициент поперечной деформации и	
	E_x	E_y	V _x	Vy
KPO-1	11150	9830	0,165	0,22
KPO-2	10680	8450	0,23	0,3
KPO-3	6450	5150	0,32	0,35

РЕЗУЛЬТАТЫ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

В рамках исследования было произведено микро- и макромоделирование опытного образца каменной кладки в среде ANSYS 14.0.

Для создания конечно-элементной модели применялся трехмерный (3D) элемент объемного НДС с двадцатью узлами SOLID 186. Элемент SOLID 186 имеет квадратичное представление перемещений и может использовать нерегулярную форму сетки.

Узлы элемента имеют три степени свободы: перемещения в направлении осей X, Y и Z узловой системы координат. Элемент SOLID 186 обладает свойствами пластичности, гиперупругости, ползучести, изменения жесткости при приложении нагрузок, больших перемещений и больших деформаций. Кроме того, элемент может иметь свойства анизотропного материала. Направления осей анизотропии материала соответствуют направлениям системы координат элемента. Геометрия элемента, расположение узлов и система координат элемента показаны на рис. 4.

Рисунок 4. Геометрия элемента SOLID 186

Геометрические размеры образца для макромоделирования и микромоделирования были приняты 510×515×120 мм при толщине растворного шва в случае микромодели 10 мм. К образцу через стальные плиты прикладывалась равномерно распределенная нагрузка.

Микро- и макромодели с разбиением на конечные элементы и приложенной нагрузкой представлены на рис. 5.

Длина баз для регистрации деформаций в вертикальном и горизонтальном направлениях была принята равной 290 мм.

Рисунок 5. КЭ-модели образцов каменной кладки: *а* — микромодель, *б* — макромодель

Размер конечных элементов в случае микромодели для кладочных элементов был принят 60 мм, для растворных швов — 20 мм. В случае макромодели размер конечных элементов для кладки был принят равным 40 мм.

В случае микромодели между кладочными элементами и раствором контакт задавался жестким с использованием опции «bonded». Контакт между кладкой и металлическими плитами пресса задавался при помощи опции «frictional» со значением коэффициента трения 0,2. Нижняя опорная плита закреплена в нижней опорной части от перемещений в трех ортогональных направлениях. К верхней опорной плите приложено усилие в вертикальном направлении.

На рис. 6 показано распределение сжимающих напряжений на микро- и макромоделях. Распределение напряжений в первом и во втором случае очень схожи и свидетельствуют об образовании под грузовыми и опорными пластинами уплотнений каменной кладки в виде клиньев, под действием которых происходит ее разрушение от преодоления сопротивления сдвигу, отрыву и сжатию.

Рисунок 6. Характер распределения сжимающих напряжений в КЭ-моделях каменной кладки: *а* – микромодель, *б* – макромодель

Данный механизм разрушения кладки при сжатии описан в работе [8]. На рис. 7 приведены расчетные и экспериментальные диаграммы деформирования опытных образцов кладки. Сравнение полученных диаграмм деформирования свидетельствует об удовлетворительном согласовании результатов расчета с экспериментальными данными. Следует отметить некоторые отличия в расчетных и экспериментальных деформациях микромоделей серий КРО-1с и КРО-3с. Указанные отличия объясняются погрешностью оценки контактных свойств материалов испытанных образцов (начального сопротивления сдвигу кладочного раствора и коэффициента внутреннего трения). Однако, решение такой задачи сопряжено с высокими аппаратными затратами, что является абсолютно нецелесообразным в случае проведения практических расчетов. В упругой стадии работы имело место практически полное совпадение деформаций микромодели с экспериментальными данными и с деформациями макромодели.

Рисунок 7. Диаграммы деформирования опытных образцов кладки и КЭ-моделей: *a* – серия образцов КРО-1с, *б* – серия образцов КРО-2с, *в* – серия образцов КРО-3с

ЗАКЛЮЧЕНИЕ

Исследования показали удовлетворительную сходимость результатов численного анализа образца каменной кладки, подверженного сжатию, с результатами экспериментальных исследований. Численным расчетом микромоделей можно определять деформационные и прочностные характеристики каменной кладки, заменяя трудоемкие и дорогостоящие эксперименты. Следует развивать исследования каменной кладки, направленные на совершенствование микромоделей, позволяющих учитывать физическую нелинейность материалов, нелинейность работы слоев кладки в зонах контакта, механику разрушения материалов.

Список цитированных источников

- Еврокод 6. Проектирование каменных конструкций. Часть 1-1: Общие правила для армированных и неармированных конструкций: СТБ EN 1996-1-1-2008. — Введ.1.07.2009. — Минск: Госстандарт, 2009. — 128 с.
- Lourenço P.B. Computational Strategies for Masonry Structures. PhD thesis, Technical University Delft. Delft University Press, The Netherlands, ISBN 90-407-1221-2, 1996. – 220 p.
- 3. Методы испытаний каменной кладки. Часть 1. Определение прочности при сжатии: EN 1052-1. Введ.07.10.1998. CEN/TC 125. 10 с.
- Методы испытаний строительных блоков. Часть 1. Определение прочности при сжатии: СТБ EN 772-1-2008. Введ. 01.01.09. Минск: Госстандарт. 9 с.
- 5. СТБ 1307-2002 Смеси растворные и растворы строительные. Технические условия — Введ. 01.07.2002. — Минск: Госстандарт. — 18 с.
- Методы испытания раствора для каменной кладки. Часть 11. Определение прочности на растяжение при изгибе и прочности при сжатии затвердевшего раствора: EN 1015-11:1999+A1:2006. — Brussels: CEN/TC 125. — 18 с.
- 7. *Деркач В.Н.* Деформационные характеристики каменной кладки в условиях плоского напряженного состояния / В.Н. Деркач // Строительство и реконструкция. — Орел: ОрелГТУ. — 2012. — № 2 (40). — С. 3—11.
- Соколов Б.С. Исследования сжатых элементов каменных и армокаменных конструкций: Научное издание. / Б.С. Соколов, А.Б. Антаков — М.: Издательство АСВ, 2010. — 104 с.

Получено 20.09.12.