Источник: Деркач, В.Н. Анизотропия прочностных и деформационных характеристик при сжатии каменной кладки из керамзитобетонных кладочных элементов / В.Н. Деркач, А.В. Галалюк // Проблемы современного бетона и железобетона : сб. науч. тр. / Ин-т БелНИИС; редкол.: М. Ф. Марковский [и др.]. – Минск, 2013. – Вып. 5. – С. 68-77.

Деркач Валерий Николаевич, канд. техн. наук, заместитель директора, филиал РУП «Институт БелНИИС» – «Научно-технический центр», г. Брест Галалюк Антон Владимирович, аспирант,

филиал РУП «Институт БелНИИС» – «Научно-технический центр», г. Брест

АНИЗОТРОПИЯ ПРОЧНОСТНЫХ И ДЕФОРМАЦИОННЫХ ХАРАКТЕРИСТИК ПРИ СЖАТИИ КАМЕННОЙ КЛАДКИ ИЗ КЕРАМЗИТОБЕТОННЫХ КЛАДОЧНЫХ ЭЛЕМЕНТОВ

ANISOTROPY OF THE STRENGTH AND DEFORMATION CHARACTERISTICS OF CLAYDITE-CONCRETE BRICKS MASONRY IN COMPRESSION

Аннотация

Приведены результаты экспериментальных исследований анизотропии прочностных и деформационных характеристик при сжатии каменной кладки из керамзитобетонных кладочных элементов на растворе общего назначения. Показано, что степень анизотропии указанных характеристик не зависит от прочности кладочного раствора.

Abstract

The article contains the results of the experimental researches of masonry compression strength and deformation characteristics' anisotropy. Masonry specimens were made of claydite-concrete masonry elements with general-purpose mortar. It is shown that the anisotropy of these characteristics is independent on the strength of masonry mortar.

введение

Кладка из керамзитобетонных кладочных элементов зачастую используется в качестве стенового заполнения каркасных зданий. При перекосе панелей каркаса в плоскости заполнения, которые вызываются ветровыми воздействиями или неравномерными деформациями основания, могут иметь место ситуации, при которых каменная кладка оказывается сжатой вдоль и поперек горизонтальных растворных швов [1]. В этом случае для оценки предельного состояния каменного заполнения требуется знание прочностных характеристик каменной кладки при сжатии в направлениях главных осей анизотропии (f_x; f_y), которые совпадают с горизонтальными и вертикальными растворными швами. Расчет напряжений и деформаций в заполнении при перекосе может быть выполнен при наличии данных о деформационных характеристиках каменной кладки в направлении главных осей анизотропии: модулей упругости (E_x; E_y) и коэффициентов Пуассона (v_{xy}; v_{yx}). В действующих нормах [2, 3] указанные значения прочност-

В действующих нормах [2, 3] указанные значения прочностных и деформационных характеристик в полном объеме отсутствуют.

МЕТОДИКА ИСПЫТАНИЙ

Определение прочностей и деформационных характеристик каменной кладки производилось на образцах, изготовленных из керамзитовых полнотелых кладочных элементов. Размеры и форма образцов приняты в соответствии с EN 1052-1 [4].

Были испытаны три серии образцов с приложением нагрузки перпендикулярно и параллельно плоскости горизонтальных растворных швов. Каждая серия включала в себя три испытываемых образца и была изготавлена с применением кладочного раствора различной прочности при неизменной нормализованной прочности кладочных элементов, определенной в соответствии с [6] и равной fb = 6,2 МПа при сжатии перпендикулярно «постели» и f_b = 5,6 МПа при сжатии перпендикулярно «спостели» и f_b = 5,6 МПа при сжатии перпендикулярно «тычку». Серия КРЗУ-1 изготавливалась на растворе прочностью f_m = 10,34 МПа; КРЗУ-2 – на растворе прочностью f_m = 6,13 МПа; КРЗУ-3 – на растворе прочностью f_m = 2,59 МПа. Общий вид образцов, геометрические характеристики и схема расстановки измерительных приборов представлены на рис. 1 и 2.

Нагружение опытных образцов производилось при помощи гидравлического пресса П-125. Усилие возрастало равномерно, при этом скорость нагружения выбиралась такой, чтобы достичь разрушения образца в пределах 15–30 минут от начала приложения нагрузки. Во время снятия отсчетов по приборам нагрузка поддерживалась на постоянном уровне.

Измерения производились до появления сквозных трещин в зоне установки индикаторов.

Прочность при сжатии отдельного испытываемого образца кладки рассчитывалась с точностью до 0,1 Н/мм² по формуле (1):

Рисунок 1. Схема испытаний опытных образцов при сжатии поперек горизонтальных растворных швов: а – общий вид; б – схема расстановки приборов (1 – опытный образец; 2 – индикаторы перемещений часового типа ИГП-1 с ценой деления 0,001 мм; h_s = 580 мм; l_s = 510 мм; t_s = 120 мм)

Рисунок 2. Схема испытаний опытных образцов при сжатии вдоль горизонтальных растворных швов: а – общий вид; б – схема расстановки приборов (1 – опытный образец; 2 – индикаторы перемещений часового типа ИГП-1 с ценой деления 0,001 мм; h_s = 770 мм; l_s = 380 мм; t_s = 120 мм)

$$f_i = \frac{F_{i,max}}{A_i},$$
 (1)

где F_{i,max} – максимальная нагрузка воспринимаемая образцом каменной кладки;

А_і – площадь поперечного сечения образца.

Модуль упругости E_i определялся как секущий модуль при среднем значении относительной деформации, измеренной в двух точках ε_i , и нагрузке, равной одной трети разрушающей нагрузки F_{imax} (2):

$$E_{i} = \frac{F_{i,max}}{3\varepsilon_{i}A_{i}},$$
(2)

где F_{i,max} – максимальная нагрузка, воспринимаемая образцом каменной кладки;

А, – площадь поперечного сечения образца;

 ε – относительные продольные деформации.

Коэффициент поперечной деформации v (коэффициент Пуассона) определялся по формуле (3):

$$\boldsymbol{\vartheta} = \left| \frac{\boldsymbol{\varepsilon}}{\boldsymbol{\varepsilon}'} \right| \,, \tag{3}$$

где ε – относительные продольные деформации;

є'- относительные поперечные деформации.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

При сжатии каменной кладки в направлении, перпендикулярном горизонтальным растворным швам, наблюдалось разрушение образцов по двум характерным схемам.

При разрушении образцов по первой схеме первые трещины образовывались в торце образца, проходя через 1...5 рядов кладки (при нагрузке, равной 0,8–0,9 F_{max}). Далее с увеличением нагрузки образовались трещины в зоне установки индикаторов, пересекая одновременно 4...5 рядов кладки, разделяя образец на две равные части; одновременно происходило увеличение ширины раскрытия ранее образовавшихся трещин в торцах образцов.

При разрушении образцов по второй схеме первые трещины образовывались в зоне установки индикаторов перемещений, разделяя образцы на равные столбы (при нагрузке 0,4 – 0,8 F_{max}). С увеличением нагрузки образовывались новые трещины в торцах образцов и увеличивалась ширина раскрытия ранее образовавшихся трещин.

Разрушение образцов сопровождалось значительным расширением ранее образовавшихся трещин и смятием верхних рядов испытываемой кладки.

На рис. 3 показаны характерные виды разрушения и диаграммы деформирования опытных образцов.

а

Рисунок 3. Характерный вид разрушения опытных образцов (а); диаграммы деформирования каменной кладки на растворах различной прочности при сжатии (б)

По диаграммам деформирования были определены значения секущего модуля упругости (Е) по зависимости (2) и коэффициента Пуассона (v) по зависимости (3) (табл. 1).

Таблица 1

Результаты испытаний каменной кладки сжимающей нагрузкой перпендикулярно горизонтальным растворным швам

№ серии ис- пытываемых образцов	Прочность камен- ной кладки при сжатии f _{y.obs} (МПа)		Модуль при с E _{y,obs}	упругости сжатии (МПа)	Коэффициент поперечного расширения v _{xy,obs}		
	одного образца f _{y,obs i}	среднее значение по серии f _{y,obsmv}	одного образца Е _{y,obs i}	среднее значение по серии Е _{y,obsmv}	одного об- разца v _{xy,obs i}	среднее значение по серии v _{xy,obsmv}	
Образцы выполнены из КРЗУ- $f_b = 6,2$ МПа на растворе $f_m = 10,34$ МПа							
КРЗУ-1(г)-1	4,07		5074		0,19		
КРЗУ-1(г)-2	4,16	4,23	5269	5418	0,24	0,23	
КРЗУ-1(г)-3	4,47		5910		0,25		
Образцы выполнены из КРЗУ- $f_b = 6,2$ МПа на растворе $f_m = 6,13$ МПа							
КРЗУ-2(г)-1	3,59		5030		0,24	0,23	
КРЗУ-2(г)-2	3,93	3,95	5352	5177	0,27		
КРЗУ-2(г)-3	4,33		5149		0,20		
Образцы выполнены из КРЗУ- $f_b = 6,2$ МПа на растворе $f_m = 2,59$ МПа							
КРЗУ-3(г)-1	3,93		3993		0,23		
КРЗУ-3(г)-2	4,50	3,92	5355	4562	0,25	0,24	
КРЗУ-3(г)-3	3,31		4340		0,22		

При сжатии каменной кладки в направлении, параллельном горизонтальным растворным швам, практически во всех образцах первые трещины образовывались при нагрузке равной 0,5–0,9 F_{max} в торцах и проходили через 0,5–2,5 ряда кладки. Далее с увеличением нагрузки в растворных швах возникали единичные трещины длиной, равной 0,5…1,5 высоты кладочного элемента. Разрушение образцов сопровождалось раскрытием трещин в торцах, значительным расширением ранее образовавшихся трещин и смятием верхних рядов испытываемых образцов.

На рис. 4 показаны характерные виды разрушения и диаграммы деформирования опытных образцов.

а

Рисунок 4. Характерный вид разрушения опытных образцов (а); диаграммы деформирования каменной кладки на растворах различной прочности при сжатии (б)

По диаграммам деформирования были определены значения секущего модуля упругости (Е) и коэффициента Пуассона (v) (табл. 2).

Таблица 2

Результаты испытаний каменной кладки сжимающей нагрузкой параллельно горизонтальным растворным швам

№ серии ис- пытываемых образцов	Прочность камен- ной кладки при сжатии f _{x,obs} (МПа)		Модуль при с E _{x,obs}	упругости сжатии (МПа)	Коэффициент поперечного расширения v _{xy,obs}		
	одного образца f _{x,obs i}	среднее значение по серии f _{x,obsmv}	одного образца Е _{х,obs i}	среднее значение по серии Е _{х,obsmv}	одного об- разца v _{xy,obs i}	среднее значение по серии v _{xy,obsmv}	
Образцы выполнены из КРЗУ- $f_b = 5,6$ МПа на растворе $f_m = 10,34$ МПа							
КРЗУ-1(в)-1	4,56		6316		0,25		
КРЗУ-1(в)-2	4,60	4,80	5746	6137	0,21	0,22	
КРЗУ-1(в)-3	5,24		6350		0,19		
Образцы выполнены из КРЗУ- $f_b = 5,6$ МПа на растворе $f_m = 6,13$ МПа							
КРЗУ-2(в)-1	3,65		6314		0,24	0,21	
КРЗУ-2(в)-2	4,78	4,22	6452	6223	0,22		
КРЗУ-2(в)-3	4,22		5903		0,19		
Образцы выполнены из КРЗУ- f _b = 5,6 МПа на растворе f _m = 2,59МПа							
КРЗУ-3(в)-1	4,23		4409		0,24		
КРЗУ-3(в)-2	3,61	3,90	5394	5083	0,20	0,22	
КРЗУ-3(в)-3	3,86		5446		0,21		

Степень анизотропии каменной кладки при сжатии характеризуется отношением прочностных и деформационных характеристик в направлении главных осей анизотропии, совпадающих с направлением горизонтальных и вертикальных растворных швов (табл. 3).

Таблица 3

Степень анизотропии прочностных и деформационных характеристик каменной кладки из керамзитобетонных кладочных элементов

Серия	Прочность раствора f _m ,МПа	f _y , МПа	f _x , МПа	t ,	E _y , MIIa	Е _x , МПа	E	V _{xy}	V _{yx}	$\frac{V_{xy}}{yx}$
КРЗУ-1	10,34	4,23	4,80	0,88	5418	6137	0,88	0,23	0,22	1,05
КРЗУ-2	6,13	3,95	4,22	0,94	5177	6223	0,83	0,23	0,21	1,1
КРЗУ-З	2,59	3,92	3,90	1,01	4562	5083	0,90	0,24	0,22	1,1

Из табл. 3 следует, что каменная кладка, выполненная из керамзитобетонных кладочных элементов, обладает слабо выраженной анизотропией прочностных и деформационных свойств, которая не зависит от прочности кладочного раствора.

ЗАКЛЮЧЕНИЕ

На основании выполненных экспериментальных исследований можно заключить:

1) кирпичная кладка из керамзитобетонных кладочных элементов I группы на растворе общего назначения обладает слабо выраженной анизотропией прочностных и деформационных свойств при сжатии, которую при расчете напряжений и деформаций в каменном заполнении в условиях плоского напряженного деформированного состояния можно не учитывать;

2) степень анизотропии каменных кладок из керамзитобетонных кладочных элементов I группы на растворе общего назначения не зависит от прочности кладочного раствора.

Список использованных источников

 Деркач, В.Н. Учет работы каменного заполнения при статическом расчете каркасных зданий / В.Н. Деркач // Проблемы современного бетона и железобетона : Сб. науч. тр. / РУП «Институт БелНИИС». – Минск, 2012. – С. 30–39.

- Еврокод 6. Проектирование каменных конструкций. Часть 1-1: Общие правила для армированных и неармированных конструкций: СТБ ЕN 1996-1-1-2008. – Введ. 01.07.09. – Минск : Госстандарт, 2009. – 128 с.
- Каменные и армокаменные конструкции: СНиП II-22-81* (с изм. № 1 и № 2). – Введ. 01.01.83. – М. : ЦНИИСК им. В.А. Кучеренко Госстроя СССР: ФГУП ЦПП, 2004. – 40 с.
- 4. Методы испытаний каменной кладки. Часть 1. Определение прочности при сжатии: EN 1052-1. – Введ.07.10.98. – CEN/TC 125. – 10 с.
- Методы испытаний строительных блоков. Часть 1. Определение прочности при сжатии: СТБ ЕN 772-1-2008. Введ. 01.01.09. Минск : Госстандарт. 9 с.
- Методы испытания раствора для каменной кладки. Часть 11. Определение прочности на растяжение при изгибе и прочности при сжатии затвердевшего раствора: EN 1015-11:1999+A1:2006. – Brussels: CEN/TC 125, 2006. – 18 с.

Статья поступила в редколлегию 14.10.2013