Experimental Research of the Displacements of the Reinforced Concrete Slabs of Highways Pavement and Assessment of the Accuracy of the Calculation Method

Semenyuk S., Kumashov R.

Crossref logo
https://doi.org/10.35579/2076-6033-2020-12-12

ABSTRACT

The article presents the results of experimental and numerical researches of the contact problem of nonlinear elasticity theory: a physically non-linear anisotropic inhomogeneous slab on a linear-elastic homogeneous base. Static load tests of the 2PP30.18-30 plate of the 3.503.1-1 series were performed to determine the actual distribution of displacements under the concrete slab. Based on the results of static load tests, the slab displacement fields were constructed for various loading options. The Zhemochkin method is used to solve the contact problem. The Ritz method is used to determine the displacements of a slab with a pinched normal at the origin. The displacements of the middle surface of the slab from the unit force were determined as a series based on the first 5 Clebsch partial solutions. Theoretical numerical researches and experimental data were processed using mathematical statistics to determine the acceptability of the proposed method for calculating reinforced concrete slabs on a linearly elastic base. Slab displacements are fundamental when calculating the values of bending and torques, as well as the transverse force. Therefore, statistical processing of numerical and experimental results was performed based on the values of displacements at various stages of load application on the slab. The central loading of the slab was considered. The relations of experimental displacements to theoretical displacements are determined for points in the locations of displacement meters. The Zhemochkin method allows quite accurately describe the distribution of displacements and the reactive pressure under the slab in general. However, the values of displacements in numerical researches are underestimated by an average of 1.5 times compared to static load tests. Analysis of tabular data shows a good convergence of the proposed calculation method with experimental data for Central loading. The accuracy of the proposed method was 83.3 % for a deviation of 30 %, and 93.4 % for a deviation of 40 %. The deviation is explained by the nonlinear behavior of the soil in reality, while the numerical studies use a linear model of the soil.

Keywords: reinforced concrete slab, bearing capacity, calculation models, experimental research, numerical research, accuracy assessment.

For citation: Semenyuk S., Kumashov R. Eksperimentalnye issledovaniya osadok zhelezobetonnykh plit pokrytiya avtomobilnykh dorog i otsenka tochnosti raschetnoy metodiki [Experimental research of the displacements of the reinforced concrete slabs of highways pavement and assessment of the accuracy of the calculation method]. In: Contemporary Issues of Concrete and Reinforced Concrete: Collected Research Papers. Minsk. Institute BelNIIS. Vol. 12. 2020. pp. 185-208. https://doi.org/10.35579/2076-6033-2020-12-12 (in Russian).

Full text in Russian:



    References:


  1. Semenyuk S. D., Kumashov R. V. International Journal for Computation Civil and Structural Engineering. 2018. pp. 149- 157. (rus)
  2. Kumashov R. V. Materialy, oborudovanie i resursosberegayushchie tekhnologii: materialy mezhdunar. nauch.-tekhn. konf. Mogilev: Belorus.-Ros. un-t, 2018. pp. 298-299. (rus)
  3. Zhemochkin B. N., Sinicyn A. P. Prakticheskie metody rascheta fundamentnykh balok i plit na uprugom osnovanii [Practical methods for calculating foundation beams and slabs on an elastic foundation]. Mjscow: Gosstrojizdat, 1962. 240 p. (rus)
  4. Bosakov S. V. Staticheskie raschety plit na uprugom osnovanii [Static calculations of slabs on an elastic base]. Minsk: BNTU, 2002. 128 p. (rus)
  5. Timoshenko S. P., Vojnovskij-Kriger S. Plastinki i obolochki [Plates and membranes]. Moscow: Fiz.-mat. izd-vo, 1963. 536 p. (rus)
  6. Solomin V. I. Shmatkov S. B. Metody rascheta i optimal’noe proektirovanie zhelezobetonnykh fundamentnykh konstrukciy [Calculation methods and optimal design of reinforced concrete foundation structures]. Moscow: Strojizdat, 1986. 206 p. (rus)
  7. Semenyuk S. D. Zhelezobetonnye prostranstvennye fundamenty zhilykh i grazhdanskih zdaniy na neravnomerno deformirovannom osnovanii [Reinforced concrete spatial foundations of residential and civil buildings on an unevenly deformed base]. Mogilev: Belorus.-Ros. un-t, 2003. 269 p. (rus)
  8. Veneckij A. G. Teoriya veroyatnostey i matematicheskaya statistika [Probability theory and Mathematical Statistics]. Moscow: Statistika, 1975. 278 p. (rus)
  9. Gmurman V. E. Teoriya veroyatnostey i matematicheskaya statistika [Probability theory and Mathematical Statistics]. Moscow: Vyssh. shk., 1977. 479 p. (rus)
  10. Tretyak, L. N., Vorobev A. L. Osnovy teorii i praktiki obrabotki eksperimentalnykh dannyh: uchebnoe posobie [Fundamentals of theory and practice of experimental data processing: tutorial]. Orenburg: OGU, 2015. 215 p. (rus)
  11. Evrokod. Osnovy proektirovaniya stroitelnykh konstrukciy [Eurocode Basis of structural design] : TKP EN 1990-2011. Introduced: 01.07.12. Minsk: Minstrojarhitektury, 2012. 85 p. (rus)

ISSN 2664-567X (Online)
ISSN 2076-6033 (Print)

Мы используем куки
При использовании данного сайта, вы подтверждаете свое согласие на использование файлов cookie. Если вы не согласны с тем, что на сайте используется данный тип файлов, то вы должны соответствующим образом установить настройки вашего браузера или не использовать сайт