The Method of Determining the Composition of the Concrete Mixture to the Required Strength of Non-Autoclaved Aerated Concrete on Micro Filler of Dispersed Granite Dropout

Samuilov Yu.

Crossref logo
https://doi.org/10.35579/2076-6033-2019-11-15

ABSTRACT

The article presents the results of research in the form of methods for determining the composition of the mixture for the manufacture of aerated cellular concrete non-autoclaved hardening on cement binder and microfill from dispersed granite screenings with a given design strength. Information is given about the components of the designed aerated concrete mixture, including: astringent, micro-filler, gas-forming additives and surfactants. The technology of preparation of samples is shown. The developed method takes into account such factors as: the projected density of cellular concrete, the ratio of the required amount of micro-filler and cement, the ratio of water consumption and the total content of solid components of the mixture, the projected moisture content of cellular concrete. This technique is an addition to the method of determining the composition of the aerated concrete mixture of the required density of non-autoclaved aerated aerated concrete on a microfiller from dispersed granite screenings [1]. It allows to select with sufficient accuracy a set of the main parameters influencing strength characteristics of cellular concrete thanks to what the projected durability of this construction material is reached. In the presented method, the graphical dependences of the strength of non-autoclaved aerated cellular concrete on a microfill from dispersed granite screenings on the main parameters affecting it are demonstrated. On the basis of the received dependences reference samples of cellular concrete were made and tested. These samples were made from a mixture whose parameters corresponded to the maximum strength parameters. The test results of the reference samples formed a formula that binds the projected strength of cellular concrete and the factors affecting it. Analytical work with this formula, in combination with the method [1], allows: to obtain cellular concrete of a given strength; to save astringent, without reducing its strength characteristics; to expand the range of non-autoclaved cellular aerated concrete by strength characteristics; to provide the necessary mobility of the mixture, while maintaining the design strength of the finished cellular concrete. The article presents data on the results of testing the developed technique, confirming its effectiveness.

Keywords: aerated concrete of non-autoclave hardening, micro-filler, ground granite screenings, the composition, aerated concrete mix, design strength of cellular concrete.

For citation: Samuilov Y. The Method of Determining the Composition of the Concrete Mixture to the Required Strength of Non-Autoclaved Aerated Concrete on Micro Filler of Dispersed Granite Dropout. Contemporary Issues of Concrete and Reinforced Concrete: Collected Research Papers. Minsk. Institute BelNIIS. Vol. 11. 2019. pp. 234–252. (in Russian)

Full text in Russian:



References:

  1. Samuylov, Yu. D. Metodika opredeleniya sostava gazobetonnoy smesi trebuemoy plotnosti neavtoklavnogo yacheistogo gazobetona na mikrozapolnitele iz dispergirovannogo granitnogo otseva [The method of determining the composition of the concrete mixture to the required density of non-autoclaved aerated concrete on micro filler of dispersed granite dropout]. Contemporary Issues of Concrete and Reinforced Concrete: Collected Research Papers. Minsk. Institute BelNIIS. Vol. 10. 2018. pp. 214–232. (rus)
  2. Instruktsiya po izgotovleniyu izdeliy iz yacheistogo betona [Instructions for the manufacture of cellular concrete products] : SN 277-80. Introduced: 07.02.1980. Moscow: GUP CPU, 2001. 47 p. (rus)
  3. Kudyakov A. I. Stroitelnye materialy. 2006. No. 8. pp. 8–9. (rus)
  4. Sazhnev N. P., Goncharik V. N., Garnashevich G. S., Sokolovskiy L. V. Proizvodstvo yacheistobetonnyh izdeliy: teoriya i praktika [Production of cellular concrete products: theory and practice]. Minsk: Strinko, 1999. 284 p.(rus)
  5. Betony yacheistyye. Tekhnicheskiye usloviya [Аerated concrete. Technical conditions]. STB 1570-2005. Introduced: 01.07.2006. Minsk: Minstroyarkhitektury, 2005. 15 p. (rus)
  6. JSC «Belarusian cement plant» // Official site [Electronic resource]. 2018. – Mode of access: http://www.belcement.by. – Date of access: 18.09.2018. (rus)
  7. Betony. Metody opredeleniya prochnosti po kontrolnym obraztsam [Concretes. Methods for strength determination using reference specimens]: GOST 10180-2012. Introduced: 01.02.2016. Moscow: Standartinform, 2013. 36 p. (rus)
  8. Betony. Metody opredeleniya plotnosti [Concretes. Methods for determining the density]: GOST 12730.1-78. Introduced: 01.01.1980. Moscow: Standartinform, 2007. 5 p. (rus)
  9. Betony. Metod opredeleniya vlazhnosti [Concretes. The method for determining the moisture]: GOST 12730.2-78. Introduced: 01.07.2006. Moscow: Standartinform, 2007. 4 p. (rus)
  10. Materialy i izdeliya stroitelnyye. Metod opredeleniya teploprovodnosti pri statsionarnom teplovom rezhime [The construction materials and products. Method for determination of thermal conductivity in stationary thermal regime]: STB 1618-2006. Introduced: 01.07.2006. Minsk: Minstroyarkhitektury, 2006. 16 p. (rus)
  11. Vyazhushcheye gipsovoye. Metody ispytaniy [Gypsum binders. Test methods]: GOST 23789-79. Introduced: 01.07.1980. Moscow: Standartinform, 2007. 16 p. (rus)

ISSN 2664-567X (Online)
ISSN 2076-6033 (Print)

Submit a service request
Мы используем куки
При использовании данного сайта, вы подтверждаете свое согласие на использование файлов cookie. Если вы не согласны с тем, что на сайте используется данный тип файлов, то вы должны соответствующим образом установить настройки вашего браузера или не использовать сайт